Students will identify and describe the relationship between land cover classification and surface temperature as they relate to the urban heat island effect. Students will also describe patterns between population density and the locations of urban heat islands.
Educational Resources - Search Tool
Students observe the surface temperatures of a variety of surface types found in a suburban environment.
Students interpret a graph of surface temperatures taken from city districts and other types of communities.
After learning about the different characteristics of satellite data, students will describe the advantages and disadvantages of using two different satellites to study the Urban Heat Island Effect.
Students will analyze how surface (skin) temperatures vary across a community and determine what factors contribute to this variation. Students will describe how human activity can affect the local environment.
Students will analyze a line graph that shows how the surface temperature and air temperature values change over the course of 24 hours.
In this 5E’s lesson, students observe maps that show smoke and AOD levels surrounding Fresno, California at the time when the 2020 Creek Fire was burning. Students construct a claim that identifies a relationship between fire-related data and air quality data.
The purpose of this activity is to have students use an Earth Systems perspective to identify the various causes associated with changes to Earth's forests as they review Landsat imagery of site locations from around the world.
Examine the images to see the projected differences in land use between 1900 and 2100.
This StoryMap allows students to explore the urban heat island effect using land surface temperature and vegetation data in a 5 E-learning cycle. Students investigate the processes that create differences in surface temperatures, as well as how human activities have led to the creation of urban heat islands.