Students collect and analyze temperature data to explore what governs how much energy is reflected.
Educational Resources - Search Tool
Students move through a series of short activities to explore and evaluate global solar radiation data from NASA satellites. In this process, students make qualitative and quantitative observations about seasonal variations in net energy input to the Earth System.
Students learn how to estimate the "energy efficiency" of photosynthesis, or the amount of energy that plants absorb for any given location on Earth. This is the ratio of the amount of energy stored to the amount of light energy absorbed and is used to evaluate and model photosynthesis efficiency.
Students will analyze and interpret maps of the average net atmospheric radiation to compare the flow of energy from the Sun toward Earth in different months and for cloudy versus clear days. Students will draw conclusions and support them with evidence.
Students will analyze and interpret graphs to compare the flow of (shortwave) energy from the Sun toward China over the course of a year on cloudy versus clear days. Students will draw a conclusion and support it with evidence.
Students will analyze a graph showing the amounts of peak energy received at local noon each day over the year changes with different latitudes.
Students watch a video and answer questions on Dr. Patrick Taylor (Atmospheric Scientist, NASA Langley Research Center) as he discusses the study of clouds and Earth's energy budget by analyzing data from Low Earth Orbit satellites.
This lesson is designed to help students analyze the interaction between different cloud heights and Earth's incoming and outgoing energy.
Students will analyze a graph showing the variation of energy imbalance on Earth over the year along different latitudinal zones and answer the questions that follow.
Students construct explanations about Earth’s energy budget by connecting a model with observations from side-by-side animations of the monthly mapped data showing incoming and outgoing shortwave radiation from Earth’s surface.