Students analyze surface air temperature anomalies to identify change with respect to different latitudes across the world.
Educational Resources - Search Tool
Examine (daytime) surface temperature and solar radiation received at locations found near similar latitudes using NASA Data.
Students will analyze surface temperature and solar radiation data to construct explanations about the relationship of seasons and temperature to the amount of solar energy received on Earth’s surface.
What is the atmosphere and why is it important?
Explore and connect to the GLOBE Mosquito protocol bundle.
Explore and connect to the GLOBE Urban protocol bundle.
In this activity, students make a claim about the cause of ocean currents and then develop a model to explain the role of temperature and density in deep ocean currents. This lesson is modified from "Visit to an Ocean Planet" Caltech and NASA/Jet Propulsion Laboratory.
Students analyze historic plant growth data (i.e., Peak Bloom dates) of Washington, D.C.’s famous cherry blossom trees, as well as atmospheric near surface temperatures as evidence for explaining the phenomena of earlier Peak Blooms in our nation’s capital.
Charles Gatebe is a climate scientist who studies reflected sunlight to improve our understanding of the composition of the atmosphere and surface properties, including land and ocean, and impact on Earth's radiation budget and climate. Learn about how he conducts experiments and uses data from around the world.
Students will observe monthly satellite data of the North Atlantic to identify relationships among key science variables that include sea surface salinity (SS), air temperature at the ocean surface (AT), sea surface temperature (ST), evaporation (EV), precipitation (PT), and evaporation minus pre