Students consider the impact of changing conditions on the remote island of Little Diomede, Alaska after they investigate the relationship between seasonal trends in sea ice extent with shortwave and longwave radiation flux described in Earth’s energy budget.
Educational Resources - Search Tool
A kinesthetic activity that challenges students to participate in a model that describes the fate of solar energy as it enters the Earth system. A good initial lesson for Earth’s energy budget, students unravel the benefits and limitations of their model.
Students construct explanations about Earth’s energy budget by connecting a model with observations from side-by-side animations of the monthly mapped data showing incoming and outgoing shortwave radiation from Earth’s surface.
This lesson contains a card sort activity that challenges students to predict relative albedo values of common surfaces.
Students use albedo values of common surfaces along with photographic images of Earth taken from the International Space Station to make an argument about specific anthropogenic activities that impact Earth’s albedo.
Examine (daytime) surface temperature and solar radiation received at locations found near similar latitudes using NASA Data.
Students will analyze surface temperature and solar radiation data to construct explanations about the relationship of seasons and temperature to the amount of solar energy received on Earth’s surface.
Students watch a short video to gather information about sources of methane emissions and then extend their understanding of these sources to evaluate monthly trends in the Alaska region, ultimately making connections to Earth’s energy budget.
Dr. Stackhouse uses satellite observations of the Earth-atmosphere system from multiple sources to study Earth’s global energy cycle, especially the processes that cause variability from global to regional scales. Dr. Stackhouse also develops new data products and data systems to help analyze these processes and more efficiently understand and use renewable energy sources.
This StoryMap allows students to explore the urban heat island effect using land surface temperature and vegetation data in a 5 E-learning cycle. Students investigate the processes that create differences in surface temperatures, as well as how human activities have led to the creation of urban heat islands.