Students learn how to estimate the "energy efficiency" of photosynthesis, or the amount of energy that plants absorb for any given location on Earth. This is the ratio of the amount of energy stored to the amount of light energy absorbed and is used to evaluate and model photosynthesis efficiency.
Educational Resources - Search Tool
This mini lesson engages students by watching a NASA video related to seasonal chlorophyll concentration as it relates to net radiation using NASA's Aqua satellite. Students will examine the model and answer the questions.
Students review a visualization showing a global view of the top-of-atmosphere longwave radiation from January 26 and 27, 2012. They review the supporting text and analyze the data in the visualization to answer questions.
Dr. Wickland works at NASA Headquarters in Washington, DC, where she oversees the planning and implementation of NASA's Terrestrial Ecology research program and leads its Carbon Cycle and Ecosystems Focus Area. She coordinates research programs in land cover and land use change, ocean biogeochemistry, terrestrial ecology, and biodiversity.
Dr. Stackhouse uses satellite observations of the Earth-atmosphere system from multiple sources to study Earth’s global energy cycle, especially the processes that cause variability from global to regional scales. Dr. Stackhouse also develops new data products and data systems to help analyze these processes and more efficiently understand and use renewable energy sources.
In this lesson, Observing Earth’s Seasonal Changes, students observe patterns of average snow and ice amounts as they change from one month to another, as well as connect the concepts of the tilt and orbit of the Earth (causing the changing of seasons) with monthly snow/ice data from January 2008
GLOBE protocols and learning activities that complement exploration of the Flow of Energy and Matter are outlined.
Students review a video showing how the ocean is warmed by solar energy. This is the first video of a four-part series on the water cycle, which follows the journey of water from the ocean to the atmosphere, to the land, and back again to the ocean.
Examine (daytime) surface temperature and solar radiation received at locations found near similar latitudes using NASA Data.
Students will examine how radiation, conduction, and convection work together as a part of Earth’s Energy Budget to heat the atmosphere.