Students analyze surface air temperature anomalies to identify change with respect to different latitudes across the world.
Educational Resources - Search Tool
Examine (daytime) surface temperature and solar radiation received at locations found near similar latitudes using NASA Data.
Students will analyze surface temperature and solar radiation data to construct explanations about the relationship of seasons and temperature to the amount of solar energy received on Earth’s surface.
Students will analyze a graph showing the amounts of peak energy received at local noon each day over the year changes with different latitudes.
Students construct explanations about Earth’s energy budget by connecting a model with observations from side-by-side animations of the monthly mapped data showing incoming and outgoing shortwave radiation from Earth’s surface.
Students move through a series of short activities to explore and evaluate global solar radiation data from NASA satellites. In this process, students make qualitative and quantitative observations about seasonal variations in net energy input to the Earth System.
Students review a visualization showing a global view of the top-of-atmosphere longwave radiation from January 26 and 27, 2012. They review the supporting text and analyze the data in the visualization to answer questions.
Students review a video showing a global view of the top-of-atmosphere shortwave radiation from January 26 and 27, 2012 and answer the questions that follow.
Dr. Norman Loeb, an atmospheric scientist at NASA’s Langley Research Center in Hampton, Virginia, is the principal investigator for an experiment called the Clouds and the Earth’s Radiant Energy System (CERES). CERES instruments measure how much of the sun’s energy is reflected back to space and how much thermal energy is emitted by Earth to space.
The Earth System Satellite Images, along with the Data Literacy Cubes, helps the learner identify patterns in a specific image.