Students will investigate the role of clouds and their contribution (if any) to global warming. Working in cooperative groups, students will make a claim about the future role clouds will play in Earth’s Energy Budget if temperatures continue to increase.
Educational Resources - Search Tool
Students differentiate between data sets of monthly shortwave radiation and monthly cloud coverage to discover a relationship between radiation and clouds by answering analysis questions.
Using an infographic, students describe differences in electromagnetic radiation that is part of a model of Earth’s energy budget by applying the defined terms of Shortwave Radiation and Longwave Radiation.
A kinesthetic activity that challenges students to participate in a model that describes the fate of solar energy as it enters the Earth system. A good initial lesson for Earth’s energy budget, students unravel the benefits and limitations of their model.
In this interactive, students will identify the forms of energy we receive, analyze patterns in the amount of incoming solar radiation over time, and explain why some locations on Earth have greater variability in the amount of incoming solar radiation throughout a year.
In this interactive, students will observe the effects of albedo, clouds, aerosols, and greenhouse gases on Earth's Energy Budget and differentiate between the concepts of reflection and absorption.
In this interactive, students will identify and describe the different components and flows of energy of the Earth's Energy Budget diagram as well as the imbalances that exist in Earth's Energy Budget.
In this StoryMap students will learn about the different components of the Earth's Energy Budget, where in the Earth System energy is being absorbed and reflected, and how features of the Earth such as clouds, aerosols, and greenhouse gases, can cause variations in the flow of energy into and out of Earth Systems. In the final section, students make a claim as to why the Earth's Energy Budget is currently out of balance and provide evidence to support their reasoning.
Students identify patterns and describe the relationship between chlorophyll concentration and incoming shortwave radiation.
Students will analyze and interpret maps of the average net atmospheric radiation to compare the flow of energy from the Sun toward Earth in different months and for cloudy versus clear days. Students will draw conclusions and support them with evidence.