A kinesthetic activity that challenges students to participate in a model that describes the fate of solar energy as it enters the Earth system. A good initial lesson for Earth’s energy budget, students unravel the benefits and limitations of their model.
Educational Resources - Search Tool
Students construct explanations about Earth’s energy budget by connecting a model with observations from side-by-side animations of the monthly mapped data showing incoming and outgoing shortwave radiation from Earth’s surface.
Students identify patterns and describe the relationship between chlorophyll concentration and incoming shortwave radiation.
Teachers, are you looking for resources to help you engage students in data analysis related to Global Phytoplankton Distribution?
Check out the monthly 2018 images featuring two science variables related to Phytoplankton Distribution: Chlorophyll Concentration (milligrams per cubic meter) & Monthly Flow of Energy into Surface by Shortwave Radiation (watts per square meter)
Students move through a series of short activities to explore and evaluate global solar radiation data from NASA satellites. In this process, students make qualitative and quantitative observations about seasonal variations in net energy input to the Earth System.
Students will analyze and interpret maps of the average net atmospheric radiation to compare the flow of energy from the Sun toward Earth in different months and for cloudy versus clear days. Students will draw conclusions and support them with evidence.
Students will analyze and interpret graphs to compare the flow of (shortwave) energy from the Sun toward China over the course of a year on cloudy versus clear days. Students will draw a conclusion and support it with evidence.
The Earth System Satellite Images, along with the Data Literacy Cubes, helps the learner identify patterns in a specific image.
This lesson is designed to help students analyze the interaction between different cloud heights and Earth's incoming and outgoing energy.
Students will analyze a graph showing the amounts of peak energy received at local noon each day over the year changes with different latitudes.