Students review a visualization showing a global view of the top-of-atmosphere longwave radiation from January 26 and 27, 2012. They review the supporting text and analyze the data in the visualization to answer questions.
Educational Resources - Search Tool
Students collect and analyze temperature data to explore what governs how much energy is reflected.
This lesson is designed to help students analyze the interaction between different cloud heights and Earth's incoming and outgoing energy.
Students will analyze a graph showing the amounts of peak energy received at local noon each day over the year changes with different latitudes.
Students construct explanations about Earth’s energy budget by connecting a model with observations from side-by-side animations of the monthly mapped data showing incoming and outgoing shortwave radiation from Earth’s surface.
Students watch a video and answer questions on Dr. Patrick Taylor (Atmospheric Scientist, NASA Langley Research Center) as he discusses the study of clouds and Earth's energy budget by analyzing data from Low Earth Orbit satellites.
Students will analyze and interpret graphs to compare the flow of (shortwave) energy from the Sun toward China over the course of a year on cloudy versus clear days. Students will draw a conclusion and support it with evidence.
This USGS activity leads students to an understanding of what remote sensing means and how researchers use it to study changes to the Earth’s surface, such as deforestation.
Students will analyze and interpret maps of the average net atmospheric radiation to compare the flow of energy from the Sun toward Earth in different months and for cloudy versus clear days. Students will draw conclusions and support them with evidence.
Students watch a short video to gather information about sources of methane emissions and then extend their understanding of these sources to evaluate monthly trends in the Alaska region, ultimately making connections to Earth’s energy budget.