Explore and connect to the GLOBE Weather protocol bundle.
Educational Resources - Search Tool
Atmospheric scientists study the weather and climate and examine how those conditions affect human activity and the earth in general. Most atmospheric scientists work indoors in weather stations, offices, or laboratories. Occasionally, they do fieldwork, which means working outdoors to examine the weather. Some atmospheric scientists may have to work extended hours during weather emergencies.
By investigating the data presented in a model that displays extreme summer air temperatures, students explain energy transfer in the Earth system and consider the impact of excessive heat on local communities.
Students will analyze surface temperature and solar radiation data to construct explanations about the relationship of seasons and temperature to the amount of solar energy received on Earth’s surface.
In this activity students will compare different methods for observing the Sun’s corona and make predictions about what they will observe during the April 8, 2024 total solar eclipse.
Learners will build a 2D model of the Magnetospheric Multiscale (MMS) Spacecraft model.
Learners use a compass to trace magnetic field lines of a bar magnet. They observe a CME hitting Earth’s magnetosphere and compare its shape to the magnet. They then apply their understanding of magnetic fields to those found on the Sun.
Learners will analyze space-weather data from the National Oceanic and Atmospheric Administration (NOAA). Learners will compare two different types of data: sunspot data and measurements from magnetometers on Earth.
This hands-on activity uses the kitchen sink to model the properties of the boundary of the heliosphere and takes learners through the scientific processes used in investigations: Making observations, using models, and communicating results.
Learners will explore differences between weather on Earth and space weather and the hazards of each.