This mini lesson engages students in writing a commentary for a NASA video regarding changes in global temperatures from 1880 to 2017.
Educational Resources - Search Tool
Students observe the map image, individually, looking for changes in surface air temperatures (using data displayed, unit of measure, range of values, etc.) and noticeable patterns.
Students will describe the changes in a newly-formed volcanic island over the first three years of its life.
By investigating the data presented in a model that displays extreme summer air temperatures, students explain energy transfer in the Earth system and consider the impact of excessive heat on local communities.
Students compare climographs for two locations to determine the most likely months to expect the emergence of mosquitoes in each location.
Students will analyze surface temperature and solar radiation data to construct explanations about the relationship of seasons and temperature to the amount of solar energy received on Earth’s surface.
Students will engage in a “Zoom In Inquiry” learning routine to understand a world map that shows changes in PM2.5-attributable mortality per 100,000 population (Bondie, 2013).
This StoryMap allows students to explore the urban heat island effect using land surface temperature and vegetation data in a 5 E-learning cycle. Students investigate the processes that create differences in surface temperatures, as well as how human activities have led to the creation of urban heat islands.
Students will examine air temperature data collected through The GLOBE Program during the 2017 US solar eclipse.
Students analyze a graph that illustrates the change in global surface temperature relative to 1951-1980 average temperatures.