A kinesthetic activity that challenges students to participate in a model that describes the fate of solar energy as it enters the Earth system. A good initial lesson for Earth’s energy budget, students unravel the benefits and limitations of their model.
Educational Resources - Search Tool
In this activity, students make a claim about the cause of ocean currents and then develop a model to explain the role of temperature and density in deep ocean currents. This lesson is modified from "Visit to an Ocean Planet" Caltech and NASA/Jet Propulsion Laboratory.
In this lesson, students will explore the effect of aerosols on sky color and visibility by using an interactive virtual model.
Interpret the map, or model, to find patterns in the occurrence of tropical cyclones from 1842 through 2018.
Students are introduced to the Earthrise phenomenon by seeing the Earth as the Apollo 8 astronauts viewed our home planet for the first time from the Moon. They will analyze a time series of mapped plots of Earth science variables that NASA monitors to better understand the Earth
Learn about volcanic ash and watch a visualization of the Calbuco volcano to see how ash travels around the world.
Students observe monthly images of changing vegetation patterns, looking for seasonal changes occurring throughout 2017. These data can be used by students to develop their own models of change.
Students analyze surface air temperature anomalies to identify change with respect to different latitudes across the world.
Students will analyze a graph showing the variation of energy imbalance on Earth over the year along different latitudinal zones and answer the questions that follow.
This mini lesson engages students in watching a NASA video related to accumulated dust that makes the trans-Atlantic journey from the Sahara Desert to the Amazon rainforest using NASA's CALIPSO satellite. Students will examine a model and answer questions related to dust transport and the introduction of phosphorus to the soils of the Amazon.