In this StoryMap students will learn about what air pollution is, its environmental impact, the standards used to describe air quality as defined by the Clean Air Act, and the Earth System interactions that drive the transport of air pollution.
Educational Resources - Search Tool
Using various visualizations (i.e., images, charts, and graphs), students will explore the energy exchange that occurs when hurricanes extract heat energy from the ocean. This StoryMap is intended to be used with students who have access to the internet in a 1:1 or 1:2 setting.
Learners will explore the causes and effects of space weather and how NASA studies it.
Students will examine air temperature data collected through The GLOBE Program during the 2017 US solar eclipse.
Students will observe monthly satellite data of the North Atlantic to identify relationships among key science variables that include sea surface salinity (SS), air temperature at the ocean surface (AT), sea surface temperature (ST), evaporation (EV), precipitation (PT), and evaporation minus pre
Students are introduced to the Earthrise phenomenon by seeing the Earth as the Apollo 8 astronauts viewed our home planet for the first time from the Moon. They will analyze a time series of mapped plots of Earth science variables that NASA monitors to better understand the Earth
Students identify patterns and describe the relationship between chlorophyll concentration and incoming shortwave radiation.
Students will analyze and interpret maps of the average net atmospheric radiation to compare the flow of energy from the Sun toward Earth in different months and for cloudy versus clear days. Students will draw conclusions and support them with evidence.
This StoryMap lesson plan allows students to explore global phytoplankton distribution using chlorophyll concentration data in a 5 E-learning cycle. Students will investigate the processes that allow phytoplankton populations to thrive, as well as how their role in the carbon cycle impacts the other spheres of the Earth System.
Students observe monthly images of changing vegetation patterns, looking for seasonal changes occurring throughout 2017. These data can be used by students to develop their own models of change.