In this activity students will make observations about the objects, size, distance, and motion of the Sun, Earth, and Moon during a solar eclipse and manipulate slides to show the relationships.
Educational Resources - Search Tool
In this activity students will calculate the ratio of the size of the sun to the moon and the distance of the sun and moon from Earth to determine the type of solar eclipse possible.
Students interpret a graph of surface temperatures taken from city districts and other types of communities.
Students will explore the relationship between Nitrogen Dioxide and Precipitation in Earth's atmosphere. They will explore the data provided, make a claim, and complete a slide guided by a rubric.
Students identify patterns in chlorophyll concentration data to formulate their explanations of phytoplankton distribution.
Students analyze historic plant growth data (i.e., Peak Bloom dates) of Washington, D.C.’s famous cherry blossom trees, as well as atmospheric near surface temperatures as evidence for explaining the phenomena of earlier Peak Blooms in our nation’s capital.
Students review a visualization showing a global view of the top-of-atmosphere longwave radiation from January 26 and 27, 2012. They review the supporting text and analyze the data in the visualization to answer questions.
Students review a video that models the global impact of smoke from fires to develop an understanding of how models can be used to interpret and forecast phenomena in the Earth System.
Students will analyze a projected map of the April 8, 2024 total solar eclipse across the US, with an accompanying data table of the locations and times, to explain how people in different locations experience a solar eclipse.
In this activity students will make observations about the objects, size, distance, and motion of the Sun, Earth, and Moon during a solar eclipse.