Students explore albedo, sea ice, and the relationship between changing albedo and changing sea ice using data visualizations.
Educational Resources - Search Tool
The Earth's system is characterized by the interaction of processes that take place on molecular (very small) and planetary (very large) spatial scales, as well as on short and long time scales. Before scientists may begin their work with these data, it is important that they understand what the data are.
The Solar Eclipse Implementation Sequence provides a series of lesson plans for students to learn about solar eclipses.
Students will make a claim about whether changing albedo contributes to changes in Arctic habitats.
This hands-on activity is the construction of an extended coverage area of eclipse glasses to provide extra protection for safely viewing a solar eclipse. This makes it harder to look outside the lenses on the eclipse glasses.
In this activity, students will model the geometry of solar eclipses using quarters to represent the Sun and Moon (not to scale).
In this activity students will examine NASA data to determine the differences between a solar and lunar eclipse.
An urban heat island is a phenomenon that is best described when a city experiences much warmer temperatures than in nearby rural areas. The sun’s heat and light reach the city and the country in the same way. The difference in temperature between urban and less-developed rural areas has to do with how well the surfaces in each environment absorb and hold heat.
A kinesthetic activity that challenges students to participate in a model that describes the fate of solar energy as it enters the Earth system. A good initial lesson for Earth’s energy budget, students unravel the benefits and limitations of their model.
Students will analyze a projected map of the April 8, 2024 total solar eclipse across the US, with an accompanying data table of the locations and times, to explain how people in different locations experience a solar eclipse.