Students will investigate the role of clouds and their contribution (if any) to global warming. Working in cooperative groups, students will make a claim about the future role clouds will play in Earth’s Energy Budget if temperatures continue to increase.
Educational Resources - Search Tool
Hands-on demonstration of the El Niño Effect, trade winds, and upwelling provided by NASA's Jet Propulsion Lab.
Students differentiate between data sets of monthly shortwave radiation and monthly cloud coverage to discover a relationship between radiation and clouds by answering analysis questions.
Students will examine a 2014-2015 El Niño Southern Oscillation (ENSO) event to identify relationships among sea surface height, sea surface temperature, precipitation, and wind vectors.
Students review a video showing how the ocean is warmed by solar energy. This is the first video of a four-part series on the water cycle, which follows the journey of water from the ocean to the atmosphere, to the land, and back again to the ocean.
In this interactive, students will identify the forms of energy we receive, analyze patterns in the amount of incoming solar radiation over time, and explain why some locations on Earth have greater variability in the amount of incoming solar radiation throughout a year.
In this interactive, students will observe the effects of albedo, clouds, aerosols, and greenhouse gases on Earth's Energy Budget and differentiate between the concepts of reflection and absorption.
In this interactive, students will identify and describe the different components and flows of energy of the Earth's Energy Budget diagram as well as the imbalances that exist in Earth's Energy Budget.
Helping students build their understanding of Earth's spheres and how they are connected is difficult. Review the graphics to help identify the parts of the Earth System and the processes that connect them at the local, regional, and global scales.
This graphic organizer may be used to help students analyze the processes and components of Earth System phenomena.