An urban heat island is a phenomenon that is best described when a city experiences much warmer temperatures than in nearby rural areas. The sun’s heat and light reach the city and the country in the same way. The difference in temperature between urban and less-developed rural areas has to do with how well the surfaces in each environment absorb and hold heat.
Educational Resources - Search Tool
In this lesson students will calculate the size to distance ratio of the Sun and the Moon from Earth to determine how a solar eclipse can occur.
In this activity, students will analyze past and future eclipse data and orbital models to determine why we don’t experience eclipses every month.
In this activity, students will model the geometry of solar eclipses by plotting a few points on a piece of graph paper, and using quarters and a nickel to represent the Sun and Moon (not to scale).
In this activity students will compare different methods for observing the Sun’s corona and make predictions about what they will observe during the April 8, 2024 total solar eclipse.
Learners will build a 2D model of the Magnetospheric Multiscale (MMS) Spacecraft model.
Learners use a compass to trace magnetic field lines of a bar magnet. They observe a CME hitting Earth’s magnetosphere and compare its shape to the magnet. They then apply their understanding of magnetic fields to those found on the Sun.
Learners will analyze space-weather data from the National Oceanic and Atmospheric Administration (NOAA). Learners will compare two different types of data: sunspot data and measurements from magnetometers on Earth.
This hands-on activity uses the kitchen sink to model the properties of the boundary of the heliosphere and takes learners through the scientific processes used in investigations: Making observations, using models, and communicating results.
Learners will explore differences between weather on Earth and space weather and the hazards of each.