Data Literacy Cube: A Tool for Differentiated Learning in Earth Science

About this Resource

The tools in this guide are resources to support data literacy in your instructional setting with My NASA Data Earth science data and visualizations. These flexible resources may be used with graphs, data tables, and mapped images of NASA Earth science data (or other sources of Earth data). With these tools, students engage with data by rolling a cube (or die) and answering questions to guide their data analysis. Leveled question sheets provide opportunities for students to connect with data, regardless of language proficiency or academic skill. These tools are aligned with Next Generation Science Standards Science and Engineering Practices and Common Core Mathematics Standards.

Data Literacy Cube Resources

- Cube template: Within this guide, you will find a black-line master template for the cube. This template can be constructed for use with the question sheets. Alternatively, gaming dice or virtual dice rollers may be substituted for the cube.

- Question Sheets: Question Sheets are leveled for both Lexile and English-language proficiencies. The leveled question sheets contain labeled (bottom left) and unlabeled versions for you to use at your discretion to help you differentiate your instruction. Note: The Lexile range provided on each question sheet represents the text's difficulty. The students' reading comprehension levels should be taken into account when selecting the appropriate question sheet. WIDA standards and proficiency levels help educators determine which level question sheet is best suitable for the student. For further information, visit the following links: Lexile (https://lexile.com/), WIDA standards (https://wida.wisc.edu/sites/default/files/resource/WIDA-ELD-Standards-Framework2020.pdf).

Level 1 - Novice

Novice | Developing |
| :---: |
| |
| 1$)$ |

- (Lexile Levels - 200-400) (WIDA proficiency level suggestions: 1.5-2.5)
- Intended Audience: elementary students, struggling learners, ELL's, and students with specific accommodations.

Level 2 - Developing

- (Lexile Levels - 210-400) (WIDA proficiency level suggestions: 1.9-2.5)
- Intended Audience: elementary students, struggling learners, ELL's, and students with specific accommodations.

Level 3 - Proficient

- (Lexile Levels - 410-600) (WIDA proficiency level suggestions: 2.5-4.5)
- Intended Audience: students who require reading supports, and those whose sentence and word phrase dimensions are more advanced.

Level 4 - Advanced

- (Lexile Levels - 610-800) (WIDA proficiency level suggestions: 4.5-6)
- Intended Audience: fluent English speakers, academically advanced learners, and abstract thinkers.
- Keyword List: A list of keywords is included on various question sheets. It provides the teacher and learner with opportunities to document key vocabulary words that are incorporated in the data analysis prior to starting the activity. Some words have been included in the list, but space is provided for those who wish to add additional words that are important in the lesson.

- Task Card: The Task Cards provide roles for students to perform while conducting the data analysis. This allows students to specialize in an area of data analysis and recording while contributing to the team. (This is a great way to also include multilingual and other learners.)

Preparation

1.Access Earth science-related maps, graphs, and data for students to analyze. Identify lesson plans and activities that feature data resources in My NASA Data that students will analyze using the Data Literacy Cubes. You may want to print these for students to use. NOTE: These tools can be used with other Earth Science models and visualizations commonly found in textbooks, websites, etc.
a. Visit My NASA Data to identify content related to Earth Science topics. This website provides activities, lesson plans, and a data visualization tool, the Earth System Data Explorer. To access NASA data to use authentic Earth science data, visit the My NASA Data visualization tool,

https://mynasadata.larc.nasa.gov/EarthSystemLAS/UI.vm/).

b. My NASA Data Cube Icons: My NASA Data activities feature a Data Literacy cube icon. These icons indicate the compatibility of My NASA Data content to be used with the Data Literacy Cubes. Icons are displayed on the right side of My NASA Data webpages to indicate which activity could be used to engage students with the content on the page.

2.Print the appropriate question sheets for the Earth science materials you plan to use with students.
3.Print and prepare the Data Cube using the Cube Template for Students/Groups. (Note: You can also use gaming dice, virtual dice roller, etc. as a substitution.) Consider having students assemble their own cubes, individually or in teams, to foster a sense of ownership. If teams assembled the cubes, consider having the same teams use the cubes throughout the year and keeping the cubes in the classroom. You can also assign roles from the Task Cards. These roles can change throughout the year.
4. Assign question sheets to individual students or groups based on academic levels. Monitor students' progress over the year and assign new level question sheets as needed.
5. Print Task Cards for each group and other resources as needed. See the Task Card Blackline Master in this resource.

Steps

1.Distribute Earth Science maps, graphs, or data to students/groups, as well as cube or dice.
2. Distribute the appropriate leveled-question sheet to students/groups.
3. Prior to beginning the data analysis, consider the following:

- Review the list of keywords and their meanings with students.
- Identify any additional keywords your students need to know and add them in the space provided.
- Use additional scaffolding strategies as needed. You may also wish to include strategies such as: draw pictures on the cube to show what each question is about, write words in their native language, jigsaw, Frayer Model, Round robin, fishbowl, think alouds, storyboards, etc.

4. Assign the roles from the Task Card to the students in each group.
5. Begin the data analysis by instructing students to roll the cube (or numbered die) to answer appropriate question/s. (Allow students to work in a small group setting while they roll the cube and respond to the questions).

- If additional writing space is required, have students use regular notebook paper (or word processing document) and attach it to the question sheets.

6. Have each group share with another group or with the class after completing their question sheet.
7. Monitor student progress and assign new level sets as students reuse cubes throughout the year.

Task Card

Group

Role	Name of Student
Project Manager: You will help the group stay focused (no distractions), including keeping up with time.	
Data Manager: You will write the group's answers to the questions, and the group's summary of the data you are assigned.	
Chief Engineer: You will be responsible for selecting the random number (i.e., rolling the die etc.) and making sure the members in your group respond to the appropriate question.	
Communications Manager: You will present and explain your group's summary of the questions.	
Extra Position:	

Group

Role	Name of Student
Project Manager: You will help the group stay focused (no distractions), including keeping up with time.	
Data Manager: You will write the group's answers to the questions, and the group's summary of the data you are assigned.	
Chief Engineer: You will be responsible for selecting the random number (i.e., rolling the die. etc.) and making sure the members in your group respond to the appropriate question.	
Communications Manager: You will present and explain your group's summary of the questions.	
Extra Position:	

Keywords (add more words):

area	biggest value least	Earth System legend
smallest value		

1. Examine- What do the colors of the map tell you? Look closely at the map.
a. The color I see the most is \qquad .
b. The color I see the least is \qquad .
c. The (day/monthly/year) on the map is \qquad .
2. Search and Find- Where on Earth do you see this map?
a. What part of the world does the map show? (For example, country, continent, ocean, etc.)
b. Point to a spot on the map and color this circle with a crayon (or pencil) of a matching color to show the color in the spot on the map.
c. The color in the spot I am pointing to tells me that the area on the map is
\qquad
3. Analyze- What do the colors and numbers on the map tell you?
a. The color on one end of the legend is \qquad . This means \qquad .
b. The color on the other end of the legend is \qquad . This means \qquad .
c. The number on one end of the legend \qquad . This means \qquad .
4. Ask- What information do you want to know about the map?
a. I want to know \qquad .
b. How \qquad ?
5. Connect- How do the data connect to the locations on the map?
a. The place with the biggest value or number is \qquad .
b. The place with the smallest value or number is \qquad .
c. What locations share similar values? Why do you think these are similar?
6. Assess- What information can you identify on the map?
a. The information on the map shows \qquad .
b. What part of the Earth System is this information related to air, water, land, ice, living things?

Keywords (add more words):

area	biggest value least	Earth System legend
smallest value		

1. Examine- What do the colors of the map tell you? Look closely at the map.
a. The color I see the most is \qquad .
b. The color I see the least is \qquad .
c. The (day/monthly/year) on the map is \qquad .
2. Search and Find- Where on Earth do you see this map?
a. What part of the world does the map show? (For example, country, continent, ocean, etc.)
b. Point to a spot on the map and color this circle with a crayon (or pencil) of a matching color to show the color in the spot on the map.
c. The color in the spot I am pointing to tells me that the area on the map is
\qquad
3. Analyze- What do the colors and numbers on the map tell you?
a. The color on one end of the legend is \qquad . This means \qquad .
b. The color on the other end of the legend is \qquad . This means \qquad .
c. The number on one end of the legend \qquad . This means \qquad .
4. Ask- What information do you want to know about the map?
a. I want to know \qquad .
b. How \qquad ?
5. Connect-How do the data connect to the locations on the map?
a. The place with the biggest value or number is \qquad .
b. The place with the smallest value or number is \qquad .
c. What locations share similar values? Why do you think these are similar?
6. Assess- What information can you identify on the map?
a. The information on the map shows \qquad .
b. What part of the Earth System is this information related to air, water, land, ice, living things?

Map Cube Questions

Keywords (add more words):

Earth System
highest value
latitude least
longitude
lowest value most pattern

1. Examine- What do the colors of the map tell you? Look closely at the map.
a. The colors that show the most represent \qquad .
b. The colors that show the least represent \qquad .
c. The date(s) shown on the map (is/are) \qquad .
2. Search and Find- Where on Earth do you see this map?
a. Something or someplace I recognize on the map is \qquad .
b. The latitude goes from \qquad to
c. The longitude goes from \qquad to \qquad
3. Analyze- What changes do you observe? What happened?
a. The highest values show up in \qquad areas. This means \qquad .
b. The lowest values show up in \qquad areas. This means \qquad .
c. One pattern or change I observe is \qquad .
4. Ask- What information do you want to know about the map?
a. I want to know
b. How
5. Connect- How do the data connect to the locations on the map?
a. The latitude and longitude of a place with the highest value/number is \qquad .
b. The latitude and longitude of a place with the lowest value/number is \qquad .
c. What locations share similar values? Why do you think these are similar?
6. Assess- What information can you identify on the map?
a. Summarize the information that you learned from looking at the map.
b. What part of the Earth System is this information related to? \qquad
Example: atmosphere, biosphere, etc.

Map Cube Questions

Keywords (add more words):

Earth System | highest value latitude least longitude |
| :---: |
| lowest value most pattern |

1. Examine- What do the colors of the map tell you? Look closely at the map.
a. The colors that show the most represent
b. The colors that show the least represent \qquad .
c. The date(s) shown on the map (is/are) \qquad .
2. Search and Find- Where on Earth do you see this map?
a. Something or someplace I recognize on the map is \qquad .
b. The latitude goes from \qquad to
c. The longitude goes from \qquad to \qquad
3. Analyze- What changes do you observe? What happened?
a. The highest values show up in \qquad areas. This means \qquad .
b. The lowest values show up in \qquad areas. This means \qquad .
c. One pattern or change I observe is \qquad .
4. Ask- What information do you want to know about the map?
a. I want to know
b. How
5. Connect- How do the data connect to the locations on the map?
a. The latitude and longitude of a place with the highest value/number is \qquad .
b. The latitude and longitude of a place with the lowest value/number is \qquad .
c. What locations share similar values? Why do you think these are similar?
6. Assess- What information can you identify on the map?
a. Summarize the information that you learned from looking at the map.
b. What part of the Earth System is this information related to? \qquad
Example: atmosphere, biosphere, etc.

Map Cube Questions

Keywords (add more words):
coordinates Earth System longitude latitude time frame unit variable

1. Examine- What do the colors of the map tell you? Look closely at the map.
a. What variable is represented by the colors?
b. This variable explains \qquad .
c. The unit used for the variable is \qquad
d. The time frame for the map is \qquad
2. Search and Find- Where on Earth do you see this map?
a. The latitude and longitude coordinates are
b. An area (or coordinates) with the highest values is

This represents
Example: North, West, Asia, Africa, $13.4^{\circ} \mathrm{N}, 144.7^{\circ} \mathrm{E}$
c. An area (or coordinates) with the lowest values is \qquad
This represents \qquad .
Example: North, West, Asia, Africa, $13.4^{\circ} \mathrm{N}, 144.7^{\circ} \mathrm{E}$
3. Analyze- What changes do you observe? What happened?
a.l observe the following pattern \qquad
b. What changes (or similarities) do you observe in the data values along lines of latitude? What may influence this pattern?
c. What changes (or similarities) do you observe in the data values along lines of longitude? What may influence this pattern?
4. Ask- What information do you want to know about the map?
a. My hypothesis is that if \qquad , then \qquad .
b. How many \qquad ? How long \qquad ? How often \qquad ?
5. Connect-How do the data connect to the locations on the map?
a. Select a location on the map. What does the information on the legend tell you about the location?
b. Scan the entire map and select a few locations. How does the variable change?
c. What events or processes could cause these data values to change?
6. Assess- What information can you identify on the map?
a. Summarize the information that you observed on the map.
b. What part of the Earth System is this information related to atmosphere, biosphere, cryosphere, geosphere, or hydrosphere?
c. Explain the changes in this part of the Earth System?
d. How does this variable affect other parts of the Earth System?

Map Cube Questions

Keywords (add more words):
coordinates Earth System longitude latitude time frame unit variable

1. Examine- What do the colors of the map tell you? Look closely at the map.
a. What variable is represented by the colors?
b. This variable explains \qquad .
c. The unit used for the variable is \qquad
d. The time frame for the map is \qquad
2. Search and Find- Where on Earth do you see this map?
a. The latitude and longitude coordinates are
b. An area (or coordinates) with the highest values is

This represents
Example: North, West, Asia, Africa, $13.4^{\circ} \mathrm{N}, 144.7^{\circ} \mathrm{E}$
c. An area (or coordinates) with the lowest values is \qquad
This represents \qquad .
Example: North, West, Asia, Africa, $13.4^{\circ} \mathrm{N}, 144.7^{\circ} \mathrm{E}$
3. Analyze- What changes do you observe? What happened?
a.l observe the following pattern \qquad
b. What changes (or similarities) do you observe in the data values along lines of latitude? What may influence this pattern?
c. What changes (or similarities) do you observe in the data values along lines of longitude? What may influence this pattern?
4. Ask- What information do you want to know about the map?
a. My hypothesis is that if \qquad , then \qquad .
b. How many \qquad ? How long \qquad ? How often \qquad ?
5. Connect-How do the data connect to the locations on the map?
a. Select a location on the map. What does the information on the legend tell you about the location?
b. Scan the entire map and select a few locations. How does the variable change?
c. What events or processes could cause these data values to change?
6. Assess- What information can you identify on the map?
a. Summarize the information that you observed on the map.
b. What part of the Earth System is this information related to atmosphere, biosphere, cryosphere, geosphere, or hydrosphere?
c. Explain the changes in this part of the Earth System?
d. How does this variable affect other parts of the Earth System?

1. Examine- What do the colors of the map tell you?
a. The color scale represents the variable \qquad .
Example, temperature, precipitation, etc.
b. This variable explains \qquad .
c. What is the unit for the variable? \qquad
Example, cm, mm, inches, m , km , etc.
d. What is the range for the unit? \qquad
2. Search and Find- Where on Earth do you see this map?
a. What is the latitude and longitude range?
b. Identify a place you recognize and its approximate latitude and longitude.
c. What type of map projection is this?
3. Analyze- What changes do you observe? What happened?
a. What patterns are there for the high values?
b. What patterns are there for the low values?
c. What time frame does this map represent?
4. Ask- What information do you want to know about the map?
a. Form a hypothesis about the data displayed on the map.
b. What inference can you make about the cause of the data displayed?
5. Connect- How do the data connect to the locations on the map?
a.Look at the legend on the map. What do you interpret that is happening?
b. How does the variable change by latitude and longitude on the map?
c. How do the values change by area?
d. What events or processes could cause these data values to change?
6. Assess- What information can you identify on the map?
a. Why do you think this variable changed by area?
b. How does this variable affect other parts of the Earth System?
c. How could you determine the impact of this variable on other parts of the Earth System?
7. Examine- What do the colors of the map tell you?
a. The color scale represents the variable \qquad .
Example, temperature, precipitation, etc.
b. This variable explains \qquad .
c. What is the unit for the variable? \qquad
d. What is the range for the unit? \qquad
8. Search and Find- Where on Earth do you see this map?
a. What is the latitude and longitude range?
b. Identify a place you recognize and its approximate latitude and longitude.
c. What type of map projection is this?
9. Analyze- What changes do you observe? What happened?
a. What patterns are there for the high values?
b. What patterns are there for the low values?
c. What time frame does this map represent?
10. Ask- What information do you want to know about the map?
a. Form a hypothesis about the data displayed on the map.
b. What inference can you make about the cause of the data displayed?
11. Connect- How do the data connect to the locations on the map?
a. Look at the legend on the map. What do you interpret that is happening?
b. How does the variable change by latitude and longitude on the map?
c. How do the values change by area?
d. What events or processes could cause these data values to change?
12. Assess- What information can you identify on the map?
a. Why do you think this variable changed by area?
b. How does this variable affect other parts of the Earth System?
c. How could you determine the impact of this variable on other parts of the Earth System?

Keywords (add more words):

axis axes graph highest horizontal line graph lowest shortest vertical

1. Examine- What are the parts of the graph? (Look for clues in the title.)
a. The information on the line graph shows \qquad .
b. What does the horizontal axis represent? (This is usually on the bottom with numbers.) The horizontal axis represents \qquad .
c. What does the vertical axis represent? (This is usually on the left with numbers). The vertical axis represents \qquad .
d. What are the lowest numbers on the horizontal and the vertical axes? The lowest numbers are \qquad and \qquad -
e. What are the highest numbers on the horizontal and vertical axes?

The highest numbers are \qquad and \qquad .
2. Search and Find-How is the information connected in the graph?
a. Place an X on the high points of the line graph. Draw a line connecting the high points.
b. Place an O on the low points of the line graph. Draw a line connecting the low points.
3. Analyze- How do the numbers change in the graph?
a. The changes on the line graph that I see are \qquad .
b. The biggest change on the graph is \qquad This represents \qquad .
4. Ask- What do you want to know about the information from the line graph?
a. Why \qquad ?
b. How much ?
5. Connect- How can we use this information to help us?
a. I think \qquad would be interested in this graph. (Example: farmers, etc.)
b. A community member can use this information to \qquad .
6. Assess- What information do you see on the graph?
a. Look at the line graph (not the axes). Describe its shape (Example, straight, curve, hill, zig zag, etc.) \qquad .
b. What does the tallest point of the line graph show? The point shows \qquad .
c. What does the shortest point of the line graph show? The point shows \qquad .

Keywords (add more words):

axis axes graph highest horizontal line graph lowest shortest vertical

1. Examine- What are the parts of the graph? (Look for clues in the title.)
a. The information on the line graph shows \qquad .
b. What does the horizontal axis represent? (This is usually on the bottom with numbers.) The horizontal axis represents \qquad .
c. What does the vertical axis represent? (This is usually on the left with numbers). The vertical axis represents \qquad .
d. What are the lowest numbers on the horizontal and the vertical axes? The lowest numbers are \qquad and \qquad -
e. What are the highest numbers on the horizontal and vertical axes?

The highest numbers are \qquad and \qquad .
2. Search and Find-How is the information connected in the graph?
a. Place an X on the high points of the line graph. Draw a line connecting the high points.
b. Place an O on the low points of the line graph. Draw a line connecting the low points.
3. Analyze- How do the numbers change in the graph?
a. The changes on the line graph that I see are \qquad .
b. The biggest change on the graph is \qquad This represents \qquad -
4. Ask- What do you want to know about the information from the line graph?
a. Why \qquad ?
b. How much ?
5. Connect- How can we use this information to help us?
a. I think \qquad would be interested in this graph. (Example: farmers, etc.)
b. A community member can use this information to \qquad .
6. Assess- What information do you see on the graph?
a. Look at the line graph (not the axes). Describe its shape (Example, straight, curve, hill, zig zag, etc.) \qquad .
b. What does the tallest point of the line graph show? The point shows \qquad .
c. What does the shortest point of the line graph show? The point shows \qquad .

Keywords (add more words):

data $\begin{array}{cll}\text { decrease graph increase label } & \text { time range } \\ \text { unit scale timerange variable } \quad \mathrm{X} \text {-axis } & \mathrm{Y} \text {-axis }\end{array}$

1. Examine- What are parts of the graph?
a. The title tells me \qquad -
b. The label on the \mathbf{x}-axis is \qquad .
The label on the \mathbf{y}-axis is \qquad —.
c. The unit on the \mathbf{x}-axis is \qquad .

The unit on the \mathbf{y}-axis is \qquad _.
d. The scale on the \mathbf{x}-axis is \qquad . The scale on the \mathbf{y}-axis is \qquad .
2. Search and Find- How is the information connected in the graph?
a. Place an X on the high points of the graph. Draw a line connecting these points.
b. Place an O on the low points of the graph. Draw a line connecting these points.
c. The time range for the data is from \qquad to \qquad .
3. Analyze- How do the numbers in the graph change?
a. Look at the data. Describe their shape. (Example, straight, curve, hill, etc.).
b. The bottom of the graph is the \qquad axis. This manipulated variable is \qquad .
c. The left side of the graph is the \qquad axis. This responding variable is \qquad .
d. The numbers on the graph show \qquad .
4. Ask- What are questions you can answer with these data?
a. Why \qquad ?
b. How much
5. Connect- How can we use this information to help us?
a. I think \qquad would be interested in this data. (Example: farmers, etc.)
b. How could this community member use these data?
6. Assess- What information do you see on the graph?
a. Look at the line graph (not the axes). Describe its shape. (Example, straight, curve, hill, zig zag, etc.) The shape is \qquad .
b. The data from the graph \qquad (Example: increase, decrease, etc.)
c. The information on the graph tells me that \qquad .

Keywords (add more words):

data $\begin{array}{cll}\text { decrease graph increase label } & \text { time range } \\ \text { unit scale timerange variable } \quad \mathrm{X} \text {-axis } & \mathrm{Y} \text {-axis }\end{array}$

1. Examine- What are parts of the graph?
a. The title tells me \qquad -
b. The label on the \mathbf{x}-axis is \qquad .
The label on the \mathbf{y}-axis is \qquad —.
c. The unit on the \mathbf{x}-axis is \qquad .

The unit on the \mathbf{y}-axis is \qquad _.
d. The scale on the \mathbf{x}-axis is \qquad . The scale on the \mathbf{y}-axis is \qquad .
2. Search and Find- How is the information connected in the graph?
a. Place an X on the high points of the graph. Draw a line connecting these points.
b. Place an O on the low points of the graph. Draw a line connecting these points.
c. The time range for the data is from \qquad to \qquad .
3. Analyze- How do the numbers in the graph change?
a. Look at the data. Describe their shape. (Example, straight, curve, hill, etc.).
b. The bottom of the graph is the \qquad axis. This manipulated variable is \qquad .
c. The left side of the graph is the \qquad axis. This responding variable is \qquad .
d. The numbers on the graph show \qquad .
4. Ask- What are questions you can answer with these data?
a. Why \qquad ?
b. How much \qquad ?
5. Connect- How can we use this information to help us?
a. I think \qquad would be interested in this data. (Example: farmers, etc.)
b. How could this community member use these data?
6. Assess- What information do you see on the graph?
a. Look at the line graph (not the axes). Describe its shape. (Example, straight, curve, hill, zig zag, etc.) The shape is \qquad .
b. The data from the graph \qquad (Example: increase, decrease, etc.)
c. The information on the graph tells me that \qquad .

iii) Graph Cube Questions

Keywords (add more words):

characteristics
unit
dependent variable
variable $\quad X$-axis
independent variable
Y-axis

1. Examine- What are parts of the graph?
a. The name of the variable on the \mathbf{x}-axis is It is the \qquad variable. independent, dependent
b. The name of the variable on the \mathbf{y}-axis is \qquad . It is the \qquad variable. .
independent, dependent
Manipulated Variable (Independent) X Axis
c. The unit on the \mathbf{x}-axis is \qquad —. The unit on the \mathbf{y}-axis is \qquad -
d. The scale on the \mathbf{x}-axis is \qquad . The scale on the \mathbf{y}-axis is \qquad .
2. Search and Find-How is the information connected in the graph?
a. Place an X on the high points of the graph. Draw a line connecting these points.
b. Place an O on the low points of the graph. Draw a line connecting these points.
c. The time range for the data is from \qquad to \qquad .
3. Analyze- How do the data in the graph change?
a. What are the changes that you see happening on the line graph?
b. When/where do you see the most change in the data?
c. When/where do you see the least change in the data?
4. Ask- What are questions you can answer with these data?
a. What are the characteristics of \qquad ?
b. When did \qquad compare/contrast with \qquad ?
5. Connect- How can we use this information to help us?
a. What parts of the Earth are affected by this?
b. What do you think may cause these events?
c. What community members may need these data? Why?
6. Assess- What information do you see on the graph?
a. As the independent variable \qquad , the dependent variable will \qquad .
b. Based on what you know about these science variables, explain the data.

iiii Graph Cube Questions

Keywords (add more words):

characteristics
unit
dependent variable
variable $\quad X$-axis
independent variable
Y-axis

1. Examine- What are parts of the graph?
a. The name of the variable on the \mathbf{x}-axis is It is the \qquad variable. independent, dependent
b. The name of the variable on the \mathbf{y}-axis is \qquad . It is the \qquad variable. .
independent, dependent
Manipulated Variable (Independent) X Axis
c. The unit on the \mathbf{x}-axis is \qquad —. The unit on the \mathbf{y}-axis is \qquad -
d. The scale on the \mathbf{x}-axis is \qquad . The scale on the \mathbf{y}-axis is \qquad .
2. Search and Find-How is the information connected in the graph?
a. Place an X on the high points of the graph. Draw a line connecting these points.
b. Place an O on the low points of the graph. Draw a line connecting these points.
c. The time range for the data is from \qquad to \qquad .
3. Analyze- How do the data in the graph change?
a. What are the changes that you see happening on the line graph?
b. When/where do you see the most change in the data?
c. When/where do you see the least change in the data?
4. Ask- What are questions you can answer with these data?
a. What are the characteristics of \qquad ?
b. When did \qquad compare/contrast with \qquad ?
5. Connect- How can we use this information to help us?
a. What parts of the Earth are affected by this?
b. What do you think may cause these events?
c. What community members may need these data? Why?
6. Assess- What information do you see on the graph?
a. As the independent variable \qquad , the dependent variable will \qquad .
b. Based on what you know about these science variables, explain the data.

Cube Questions

1. Examine- What are parts of the graph?
a. What variable is represented on the x-axis? What is the range of values?
b. What variable is represented on the y-axis? What is the range of values?
c. What are the units of measurement for the x and y axes?
d. What geographic location does the data on the graph represent?
2. Search and Find- How is the information connected in the graph?
a. Place X on the high points of the line graph. Draw a line connecting the points.
b. Place O on the low points of the line graph. Draw a line connecting the points.
c. Do the data repeat in recognizable ways? Explain.
d. What kinds of patterns or trends do you see in the distribution of the data? Explain.
e.How do the patterns you see in the graph relate to other things you know?
3. Analyze- How are the data in the graph related?
a. Describe the relationship between the variables: positive, negative, or none.
b. Brainstorm one science variable that you predict to be directly proportional.
c. Brainstorm one science variable that you predict to be inversely proportional.
4. Ask- What are science questions you can answer with these data?
a. What are the attributes of \qquad ?
b. What would happen to \qquad if \qquad
c. How does \qquad compare/contrast with \qquad ?
5. Connect- How can we use this information to help us?
a. I think \qquad would be interested in these data because \qquad .
b. What real-world problems could this community member use these data to solve?
c. What parts of the Earth System are involved in this/these events?
d. What other science processes are related to this event?
6. Assess- What information do you see on the graph?
a. What is the numerical range of the data? Mean? Median? Mode?
b. How is the mean different from the mode in these data?
c. Are there any outliers? If so, what are they?

Cube Questions

1. Examine- What are parts of the graph?
a. What variable is represented on the x-axis? What is the range of values?
b. What variable is represented on the y-axis? What is the range of values?
c. What are the units of measurement for the x and y axes?
d. What geographic location does the data on the graph represent?
2. Search and Find- How is the information connected in the graph?
a. Place X on the high points of the line graph. Draw a line connecting the points.
b. Place O on the low points of the line graph. Draw a line connecting the points.
c. Do the data repeat in recognizable ways? Explain.
d. What kinds of patterns or trends do you see in the distribution of the data? Explain.
e.How do the patterns you see in the graph relate to other things you know?
3. Analyze- How are the data in the graph related?
a. Describe the relationship between the variables: positive, negative, or none.
b. Brainstorm one science variable that you predict to be directly proportional.
c. Brainstorm one science variable that you predict to be inversely proportional.
4. Ask- What are science questions you can answer with these data?
a. What are the attributes of \qquad ?
b. What would happen to \qquad if \qquad
c. How does \qquad compare/contrast with \qquad ?
5. Connect- How can we use this information to help us?
a. I think \qquad would be interested in these data because \qquad .
b. What real-world problems could this community member use these data to solve?
c. What parts of the Earth System are involved in this/these events?
d. What other science processes are related to this event?
6. Assess- What information do you see on the graph?
a. What is the numerical range of the data? Mean? Median? Mode?
b. How is the mean different from the mode in these data?
c. Are there any outliers? If so, what are they?

Keywords (add more words):

collect/collected data highest value instrument lowest value measure

1. Examine- What are the data (information) about?
a. The data (information) are about

Example: air temperature, precipitation, plants, etc.
b. By looking at the datal see \qquad
2. Search and Find- How were the data measured?
a. The data were collected by \qquad .
Example: me, scientist, satellite, etc.
b. The instrument used to measure this data was a/an \qquad .

Example: thermometer, ruler, etc.
3. Analyze- What do the data show?
\qquad -
a. The place on Earth where the data were collected is

Example: city, state, latitude/longitude, global, etc.
b.l observe that the time when the data were collected is

Example: month, year, day, etc.
4. Ask- Write your own questions using the data.
a. Why \qquad ?
b. How \qquad ?
5. Connect- How can we use this information to help us?
a. These data help us understand \qquad .
b. These data can help scientists by \qquad .
6. Assess- What does the information tell you? Calculate or estimate using the data.
a. The highest value is \qquad . The lowest value is \qquad
b. Graph the data (use graph paper or create your own graph to show your information).

Data Cube Questions

Keywords (add more words):

collect/collected data highest value instrument lowest value measure

1. Examine- What are the data (information) about?
a. The data (information) are about

Example: air temperature, precipitation, plants, etc.
b. By looking at the data I see \qquad
2. Search and Find- How were the data measured?
a. The data were collected by \qquad .
Example: me, scientist, satellite, etc.
b. The instrument used to measure this data was a/an \qquad .

Example: thermometer, ruler, etc.
3. Analyze- What do the data show?
\qquad -.
a. The place on Earth where the data were collected is
b.I observe that the time when the data were collected is

Example: month, year, day, etc.
4. Ask- Write your own questions using the data.
a. Why \qquad ?
b. How \qquad $?$
5. Connect- How can we use this information to help us?
a. These data help us understand \qquad .
b. These data can help scientists by \qquad .
6. Assess- What does the information tell you? Calculate or estimate using the data.
a. The highest value is \qquad The lowest value is \qquad
b. Graph the data (use graph paper or create your own graph to show your information).

Name:

Data Cube Questions

Keywords (add more words):

collect/collected data lowest value time range unit
highest value

1. Examine- What are the data (information) about?
a. The unit used for the data is \qquad .
b. The data represent (are about)

Example: ${ }^{\circ} \mathrm{C}, \mathrm{cm}, \mathrm{kg}$, etc.
Example: temperature, distance, mass, etc.
2. Search and Find- How were the data measured?
a. The data were collected every \qquad .
b. The data were collected by

Example: day, week, month, year, etc.
Example: me, scientist, satellite, etc.
3. Analyze- What does the information tell you? Calculate or estimate the numbers. using the data.
a. The highest value is \qquad and represents \qquad .
b. The lowest value is \qquad and represents \qquad .
c. The pattern/s I see
in the data is/are \qquad .
Example: the most, the least, etc.
4. Ask- Write your own questions using the data.
\qquad
b. How can?
\qquad ?
5. Connect- How can we use this information to help us?
a. These data help us understand
b. These data help explain why
c. These data can help scientists understand \qquad
6. Assess- What do the data show?
a. The geographic area of Earth where the data were collected is \qquad . Example: city, state, latitude/longitude, global, etc.
b. The time range (when did it happen?) is from to
Example: Monday, October, 12:00, etc.
c. Graph the data. (Use graph paper or create your own graph to show your information.)

Name:

Date:
Data Cube Questions

Keywords (add more words):

collect/collected data
lowest value
geographic area
highest value time range unit

1. Examine- What are the data (information) about?
a. The unit used for the data is \qquad .
b. The data represent (are about)

Example: ${ }^{\circ} \mathrm{C}, \mathrm{cm}, \mathrm{kg}$, etc.
Example: temperature, distance, mass, etc.
2. Search and Find- How were the data measured?
a. The data were collected every \qquad .
b. The data were collected by

Example: day, week, month, year, etc.
Example: me, scientist, satellite, etc.
3. Analyze- What does the information tell you? Calculate or estimate the numbers. using the data.
a. The highest value is \qquad and represents \qquad .
b. The lowest value is \qquad and represents \qquad .
c. The pattern/s I see
in the data is/are \qquad .
Example: the most, the least, etc.
4. Ask- Write your own questions using the data.
a. Why does \qquad ?
\qquad ?
5. Connect- How can we use this information to help us?
a. These data help us understand
b. These data help explain why
c. These data can help scientists understand \qquad .
6. Assess- What do the data show?
a. The geographic area of Earth where the data were collected is \qquad . Example: city, state, latitude/longitude, global, etc.
b. The time range (when did it happen?) is from to
Example: Monday, October, 12:00, etc.
c. Graph the data. (Use graph paper or create your own graph to show your information.)

Keywords (add more words):

centraltendency data	Earth System	mean median mode		
phenomenon	sphere	time range	variable	unit

1. Examine- What are the data about?
a. The variable is \qquad . It represents \qquad .
b. The independent variable is \qquad .
c. The dependent variable is \qquad .
2. Search and Find-How were the data measured?
a. The \qquad instrument collected these data.
b. The data are collected every \qquad
Example: day, week, month, quarter, year, etc.
c. The unit used to describe the data is \qquad .
Example: ${ }^{\circ} \mathrm{C}, \mathrm{cm}, \mathrm{kg}$, etc.
3. Analyze- What does the data show?
a. The geographic area of Earth that is represented is \qquad
b. The time range is from \qquad to \qquad .
c. This variable belongs in the \qquad sphere of the Earth System. Example: Hydrosphere, Atmosphere, etc.
4. Ask- Write your own questions using the data.
a. How do..., Why..., What is... \qquad .
b.I would like to compare \qquad with these data because \qquad .
c. How do these data affect another sphere in the Earth System?
5. Connect- How can we use this information to help us?
a. These data help us understand \qquad
b. These data can explain the phenomenon of \qquad because \qquad .
6. Assess- What does the information tell you? Calculate or estimate the numbers using the data.
a. The range of the data is \qquad .
b. The data's mean is equal to \qquad median \qquad mode \qquad .
c. The measure of central tendency that best represents the data is the
mean, median or mode
. This is because \qquad .
d. Graph the data (use graph paper or create your own graph to show your information).

Keywords (add more words):

centraltendency data	Earth System	mean median mode		
phenomenon	sphere	time range	variable	unit

1. Examine- What are the data about?
a. The variable is \qquad It represents \qquad .
b. The independent variable is \qquad .
c. The dependent variable is \qquad .
2. Search and Find-How were the data measured?
a. The \qquad instrument collected these data.
b. The data are collected every \qquad
Example: day, week, month, quarter, year, etc.
c. The unit used to describe the data is \qquad .
Example: ${ }^{\circ} \mathrm{C}, \mathrm{cm}, \mathrm{kg}$, etc.
3. Analyze- What does the data show?
a. The geographic area of Earth that is represented is \qquad
b. The time range is from \qquad to \qquad .
c. This variable belongs in the \qquad sphere of the Earth System. Example: Hydrosphere, Atmosphere, etc.
4. Ask- Write your own questions using the data.
a. How do..., Why..., What is... \qquad .
b.I would like to compare \qquad with these data because \qquad .
c. How do these data affect another sphere in the Earth System?
5. Connect- How can we use this information to help us?
a. These data help us understand \qquad
b. These data can explain the phenomenon of \qquad because \qquad .
6. Assess- What does the information tell you? Calculate or estimate the numbers using the data.
a. The range of the data is \qquad .
b. The data's mean is equal to \qquad median \qquad mode \qquad .
c. The measure of central tendency that best represents the data is the
mean, median or mode
. This is because \qquad .
d. Graph the data (use graph paper or create your own graph to show your information).

7. Examine- What are the data about?
a. What does the variable represent?
b. What is the range of the data?
c. In which sphere of the Earth System does this variable belong?
8. Search and Find-How were the data measured?
a. What instrument/s collected these data?
b. How frequently were the data collected?
c. What unit describes the data?
9. Analyze- What does the data show?
a. What geographic area on Earth do the data represent?
b. What time range do these data represent?
c. What area and time data would you like to collect to help you analyze these data?
10. Ask- Write your own questions using the data.
a. Identify a question related to these data that you could research.
b. Identify another scientific variable that you could evaluate with these data.
c. How do you think this area compares to other geographic provinces in your region?

> (i.e., coastal plain, highlands, etc.)
5. Connect- How can we use this information to help us?
a. What kinds of research questions could we use these data for?
b. Describe how you may use these data to explain a naturally occurring event.
c. How is technology connected to these data?
6. Assess- What information do you see on the graph?
a. Are there any outliers? If so, what are they?
b. Do the outliers meet your expectations? Why/Why not?
c. Graph the data (use graph paper or create your own graph to show your information).

1. Examine- What are the data about?
a. What does the variable represent?
b. What is the range of the data?
c. In which sphere of the Earth System does this variable belong?
2. Search and Find-How were the data measured?
a. What instrument/s collected these data?
b. How frequently were the data collected?
c. What unit describes the data?
3. Analyze- What does the data show?
a. What geographic area on Earth do the data represent?
b. What time range do these data represent?
c. What area and time data would you like to collect to help you analyze these data?
4. Ask- Write your own questions using the data.
a. Identify a question related to these data that you could research.
b. Identify another scientific variable that you could evaluate with these data.
c. How do you think this area compares to other geographic provinces in your region?

> (i.e., coastal plain, highlands, etc.)
5. Connect- How can we use this information to help us?
a. What kinds of research questions could we use these data for?
b. Describe how you may use these data to explain a naturally occurring event.
c. How is technology connected to these data?
6. Assess- What information do you see on the graph?
a. Are there any outliers? If so, what are they?
b. Do the outliers meet your expectations? Why/Why not?
c. Graph the data (use graph paper or create your own graph to show your information).

