What is sea-level rise and how does it affect us? This "Teachable Moment" looks at the science behind sea-level rise and offers lessons and tools for teaching students about this important climate topic.
Educational Resources - Search Tool
Displaying results 1 - 2 of 2
In this activity, students will use sea-level rise data to create models and compare short-term trends to long-term trends. They will then determine whether sea-level rise is occurring based on the data.
Filters
Resource Type
Lesson Duration
Spheres
NGSS Disciplinary Core Ideas
NGSS Science and Engineering Practices
NGSS Crosscutting Concepts
Supported NGSS Performance Expectations
- HS-ESS2-2: Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.
- HS-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.
- HS-ESS2-5: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.
- HS-ESS3-5: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems.
- MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
- MS-ESS3-5: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Supported Common Core Math
- (-) CC.5.G.2 Graph points on the coordinate plane to solve real-world and mathematical problems. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the
- CC.5.MD.2 Represent and interpret data. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example,
- CC.6.RP.3c Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole given a part and the percent.
- CC.6.SP.5 Summarize and describe distributions. Summarize numerical data sets in relation to their context.
- CC.7.RP.2b Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
- CC.7.RP.3 Analyze proportional relationships and use them to solve real-world and mathematical problems. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and co
- CC.8.SP.1 Investigate patterns of association in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive o
- CC.8.SP.2 Investigate patterns of association in bivariate data. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and i
- CC.9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.*
- CC.9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association.*
- CC.9-12.S.ID.8 Interpret linear models. Compute (using technology) and interpret the correlation coefficient of a linear fit.*
- Functions