In this activity, students use satellite images from the NASA Landsat team to quantify changes in glacier cover over time from 1986 to 2018.
Educational Resources - Search Tool
Displaying results 1 - 2 of 2
Students analyze data from graphs for sea ice extent (area) in both polar regions (Arctic and Antarctic) to learn about seasonal variations and over a 30-year period to learn about longer-term trends.
Filters
Student Tech Requirements
Resource Type
Lesson Duration
Spheres
NGSS Disciplinary Core Ideas
NGSS Science and Engineering Practices
NGSS Crosscutting Concepts
Supported NGSS Performance Expectations
- 4-ESS2-2: Analyze and interpret data from maps to describe patterns of Earth’s features.
- 4-PS3-2: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
- 5-ESS1-2: Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
- 5-ESS2-1: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
- ESS2A: Earth Materials and Systems
- HS-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.
- HS-ESS3-5: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems.
- MS-ESS2-1: Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.
- MS-ESS2-2: Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
- MS-ESS3-5: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Supported Common Core Math
- CC.6.RP.3c Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole given a part and the percent.
- CC.6.SP.2 Develop understanding of statistical variability. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
- CC.6.SP.3 Develop understanding of statistical variability. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
- CC.6.SP.4 Summarize and describe distributions. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
- CC.7.RP.3 Analyze proportional relationships and use them to solve real-world and mathematical problems. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and co
- CC.9-12.S.ID.3 Summarize, represent, and interpret data on a single count or measurement variable. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*