GLOBE Connections

Flow of Energy and Matter - GLOBE Learning Activities

Carbon Cycle

The measurements of The GLOBE Program provide students with the means to begin exploring Earth as a System for themselves. The processes comprising the global environment are interconnected. Many of the major environmental issues of our time have driven scientists to study how these connections operate on a global basis – to understand Earth as a system. Using GLOBE Earth System Learning Activities can guide students in the development of their own personal connections with the different components of the Earth system and how these interact with each other, including the flow of energy and matter between the components. These flows are highlighted in activities related to seasonal changes and the Carbon Cycle.

There are many learning activities for Earth as a System. You can filter the learning activities by grade band here. Select the desired grade band and click the filter button.

Selected learning activities are highlighted on this page.

 

What Can We Learn About Our Seasons? What Can We Learn About Our Seasons?

Overview: Students observe and record seasonal changes in their local study site. They establish that these phenomena follow annual cycles and conclude the activity by creating displays that illustrate the repeating pattern associated with the appearance and disappearance of seasonal markers.

Student Outcomes:

  • recognize aspects of seasonal change
  • explore relationships among seasonal changes
  • relate local seasonal changes to conventional equinox and solstice dates
  • create a profile of local seasonal variation

How Do Seasonal Temperature Patterns Vary Among Different Regions of the World? 

Data Literacy Cube Data IconData Literacy Cube Graph IconData Literacy Cube Map IconCover Page - How do Seasonal Temperature Patterns Vary Among Different Regions of the World

Overview: Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between the Northern and Southern Hemispheres, and between equatorial regions and high latitudes. Then students zoom in for a closer look at a region which has a high density of student reporting stations (such as US and Europe). They examine temperature maps for the region, from four dates during the past year (the solstices and equinoxes). Students compare and contrast the patterns in these maps, looking for seasonal patterns. At the end of the activity, students discuss the relative merits of different types of data displays: data tables, graphs and maps.

Student Outcomes:

  • Summarize the effect of latitude, elevation, and geography on global temperature patterns
  • Explore local and regional seasonal variations
  • Heat energy is transferred by conduction, convection and radiation
  • Heat moves from warmer to colder objects
  • Sun is a major source of energy for changes on the Earth’s surface
  • Weather changes from day to day and over the seasons
  • Seasons result from variations in solar insolation resulting from the tilt of the Earth’s rotation axis
  • The sun is the major source of energy at Earth’s surface
  • Solar insolation drives atmospheric and ocean circulation
  • Sunlight is the major source of energy for ecosystems
  • Mapping data with the GLOBE Student Data Server to explore seasonal temperature patterns
  • Comparing graphs, maps and data tables as tools for data analysis
  • Develop explanations and predictions using evidence
  • Recognize and analyze alternative explanations
  • Communicate results and explanations

Regional Connections-Effects of Inputs and Outputs on a Region:RC2 GLOBE

Overview: Using the region they identified for study in RC1: Defining Regional Boundaries Learning Activity, or a region identified by the teacher for this activity, students draw an imaginary box around the region. The box includes what is above the Earth’s surface (the atmosphere), and what is below (the soil, or pedosphere). Using their existing knowledge, they discuss and list the inputs and outputs of the region, prompted by guidance questions from the teacher if necessary. Next, students generate and explore “what if” scenarios. (e.g. What if the water flowing into the region were reduced by half? What if it were doubled? What if the land cover upstream were removed, or changed from forest to cropland? What if no birds moved across the region’s boundaries?) Students learn to ask such provocative questions and to make thoughtful predictions of ways in which changing one component might affect the properties of others in the regional system. Prompted by guidance questions, they write about what they have learned.

Student Outcomes:

  • Identify some scientifically appropriate inputs and outputs of a system at the regional scale;
  • Predict how changes in the input or output of one component of a system might affect other components, reflecting the concept that parts of a system shape each other through their interactions.

 

There are also learning activities associated with the GLOBE Carbon Cycle Project

GLOBE Carbon Cycle Introductory Activities Flowchart

 

The GLOBE Carbon Cycle Introductory Activities Flowchart is a useful guide to selecting Carbon Cycle learning activities. Here are a few of the projects.

Getting to Know Global Carbon Getting to Know Global Carbon

Overview: This activity provides an introduction to the carbon cycle and, more broadly, to biogeochemical cycling, the greenhouse effect and climate change. During this activity, students compare a carbon cycle diagram they develop to one developed by scientists. They are asked to investigate the diagrams through a series of questions that help them unpack information about pool and flux sizes, carbon units, residence times, and human/animal roles in the global cycle.

Student Outcomes:

  • Create diagrams of complex systems
  • Conceptualize the size of 1 Pg of carbon by comparing it to things they know
  • Describe why the global carbon cycle is not in equilibrium

 

Paper Clip Simulation A Simple System Paper Clip Simulation A Simple System

Overview: Through a simulation activity in which students act out the paper clip distribution system, students will take part in a simple system. As a result of the simulation, students will identify and analyze the basic parts of systems including input flows, output flows, and stocks.

Student Outcomes:

  • Simulate a basic system
  • Collect/record data in tables and graphs
  • Analyze data and describe patterns using qualitative descriptions and mathematical equations 
  • Create a 1-box model to learn modeling and system terms
  • Manipulate variables to obtain an expected outcome

Carbon Cycle Adventure Story Carbon Cycle Adventure Story

Overview: This activity provides an introduction to the carbon cycle and systems thinking. It also could be used, more broadly, to introduce biogeochemical cycling, the greenhouse effect and climate change. During the activity, students read about a carbon atom that begins in the atmosphere as part of carbon dioxide. Students choose where the atom will travel next, i.e. into a leaf via photosynthesis or dissolve into the ocean. Students keep track of the carbon pools they visit, and the process that takes their carbon atom on to the next pool.

Student Outcomes:

  • List the major pools and fluxes of the carbon cycle
  • Diagram the carbon cycle using box and arrow models
  • Describe what components of the carbon cycle make it a system

Sources: