

Name:	Date:	Class:	

Title: How do Different Locations on Earth Experience a Solar Eclipse? Student Sheet

The total solar eclipse path crosses from Mexico, through the United States from Texas to Maine, and up through Canada. Image Credit: ©2021 Great American Eclipse, LLC, Used with Permission.

https://mynasadata.larc.nasa.gov/sites/default/files/inline-images/2024%20Eclipse%20P ath.png

Map Key:

- The path of totality is in yellow. Durations of totality are listed at key locations in the yellow path.
- The gray oval shapes in the yellow path show the Moon's shadow at five minute intervals.
- Times of maximum totality are shown in local times along the purple curves. Times are written just north of the path of totality.
- Percentages of obscuration of the Sun of the partial eclipse are shown along the orange curves.

Name: _____ Date: _____ Class: _____

Location	Partial Begins	Totality Begins	Maximum	Totality Ends	Partial Ends
Dallas, Texas	12:23 p.m.	1:40 p.m.	1:42 p.m.	1:44 p.m.	3:02 p.m.
	CDT	CDT	CDT	CDT	CDT
ldabel,	12:28 p.m.	1:45 p.m.	1:47 p.m.	10:49 p.m.	3:06 p.m.
Oklahoma	CDT	CDT	MDT	MDT	CDT
Little Rock,	12:33 p.m.	1:51 p.m.	1:52 p.m.	1:54 p.m.	3:11 p.m.
Arkansas	CDT	CDT	CDT	CDT	CDT
Poplar Bluff,	12:39 p.m.	1:56 p.m.	1:56 p.m.	2:00 p.m.	3:15 p.m.
Missouri	CDT	CDT	CDT	CDT	CDT
Paducah,	12:42 p.m.	2:00 p.m.	2:01 p.m.	2:02 p.m.	3:18 p.m.
Kentucky	CDT	CDT	CDT	CDT	CDT
Evansville,	12:45 p.m.	2:02 p.m.	2:04 p.m.	2:05 p.m.	3:20 p.m.
Indiana	CDT	CDT	CDT	CDT	CDT
Cleveland,	1:59 p.m.	3:13 p.m.	3:15 p.m.	3:17 p.m.	4:29 p.m.
Ohio	EDT	EDT	EDT	EDT	EDT
Erie,	2:02 p.m.	3:16 p.m.	3:18 p.m.	3:20 p.m.	4:30 p.m.
Pennsylvania	EDT	EDT	EDT	EDT	EDT
Buffalo, New	2:04 p.m.	3:18 p.m.	3:20 p.m.	3:22 p.m.	4:32 p.m.
York	EDT	EDT	EDT	EDT	EDT
Burlington,	2:14 p.m.	3:26 p.m.	3:27 p.m.	3:29 p.m.	4:37 p.m.
Vermont	EDT	EDT	EDT	EDT	EDT
Lancaster, New Hampshire	2:16 p.m. EDT	3:27 p.m. EDT	3:29 p.m. EDT	3:30 p.m. EDT	4:38 p.m. EDT
Caribou,	2:22 p.m.	3:32 p.m.	3:33 p.m.	3:34 p.m.	4:40 p.m.
Maine	EDT	EDT	EDT	EDT	EDT

Eclipse Timetable, Credit: NASA Solar System Exploration, Our Galactic Neighborhood, https://mynasadata.larc.nasa.gov/sites/default/files/inline-images/eclipse%20timetable.png

Title: How do Different Locations on Earth Experience a Solar Eclipse? Student Sheet 2 of 4

Name:	Date:	Class:
-------	-------	--------

- 1. Examine the map of the United States that shows how each location will experience the April 8, 2024 solar eclipse.
- 2. Examine the data table that accompanies the data from the map. For example, if you live in Dallas, TX:
 - The **partial eclipse begins** at **12:23 pm** Central Daylight Time (CDT). The Moon's shadow will start to cover the Sun.
 - The Sun will become more and more obscured until **totality begins** at **1:40 pm** CDT.
 - As you experience totality, the sky gets darker and darker until **1:42 pm** CDT, at the **maximum totality**, which is the moment that you would experience the most darkness.
 - **Totality ends** at **1:44 pm** CDT, when the Moon's shadow moves away from you.
 - You would then experience a partial solar eclipse until the **partial ends at 3:02 pm** CDT.

Safety Reminder! Only viewers in the path of totality will be able to remove their solar eclipse glasses, and only during totality, which only lasts for about 4 minutes in most locations. The rest of the time observers will have to wear their solar eclipse glasses to view the partial eclipse.

- 3. Answer the following questions on the Google Form.
 - a. What location on the path of totality will experience the longest duration of totality?
 - b. What location on the path of totality will experience the shortest duration of totality?
 - c. Where is your location? What will you see at that location on April 8, 2024? For how long will you be able to see it?
 - d. Make a prediction: how does NASA predict the duration of totality in different locations for future solar eclipses?

Name:	Date:	Class:
-------	-------	--------

- Watch the <u>video</u> on *Tracing the 2017 Solar Eclipse* to learn more about how NASA uses data from past eclipses to predict the locations and times of future solar eclipses.
- 5. Answer the following questions about the video..
 - a. What features of this visualization are driven by data?
 - b. How does Moon topography (mountains and valleys) affect the duration of totality?
 - c. What other variables affect the way an observer views a total solar eclipse from different locations on Earth?

